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We consider the one-dimensional transport of ions into a perm-selective solid. Direct attempts to evaluate
the current-voltage characteristics for currents exceeding the diffusion limit are frustrated by the appearance of
nonconverging integrals. We describe how to overcome this obstacle using a regularization scheme.
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I. INTRODUCTION

Understanding the passage of ionic currents through ion-
selective solids �e.g., membranes, reactive electrodes, and
permeable granules� is a fundamental problem of classical
physics with applications to electrodialysis �1,2�, nanode-
vices �3–6�, thin-film batteries �7�, and ionic channels �8�.
Similar transport processes occur in solid electrolytes �9,10�
and semiconductors �11,12�.

A typical scenario entails one-dimensional �1D� transport
through an ideal ion-selective membrane. While classical
analysis predicts a diffusion-limited current saturation �13�,
both experiments and numerical analyses �14,15� have
shown the possibility of “overlimiting” currents, which ex-
ceed the diffusion limit. The physical mechanism which al-
lows such currents was explained by Rubinstein and his col-
leagues using singular-perturbation methods �1,2,16� and the
transformation from underlimiting to overlimiting currents
was explained in detail by Zaltzman and Rubinstein �17�.
The inherent instability of overlimiting currents
�1,2,5,6,16,18,19�, together with the recent discovery of
second-kind electro-osmosis at overlimiting conditions
�20–22� and the consequent applications to nonlinear electro-
phoresis of semipermeable granules �23–27�, further empha-
sizes the necessity to understand the basic 1D transport pro-
cess.

A fundamental problem in that context is the calculation
of the current-voltage �j−V� relation. This relation is well
known for underlimiting currents, whereby j saturates expo-
nentially at large V �see Eq. �28��. For currents exceeding the
diffusion limit, however, this calculation is obstructed by the
appearance of nonconverging integrals �see �28��. It is the
goal of this paper to present an asymptotic derivation of the
j−V characteristics for overlimiting currents using a system-
atic regularization procedure.

Toward this end, we will consider the simplest 1D con-
figuration �1,2,24� of an electrolyte solution, which is
bounded between an anion-impermeable planar membrane
and a well-stirred Ohmic bulk. While our scheme can be
generalized to more realistic systems �16,17,28�, we prefer to
demonstrate it for the simplest electrochemical cell that ex-
hibits all the essential characteristics of the 1D transport
mechanism.

II. PROBLEM FORMULATION

Following �2,24�, the idealized configuration we consider
comprises a symmetric electrolyte solution �permittivity �,
ionic diffusivities D�, and valencies �Z�, which is in con-
tact with an ideal cation-selective membrane, impermeable
to anions. As in �2,24� we assume that at distance L from the
membrane the electrolyte interfaces a well-stirred Ohmic
bulk characterized by an identical molar concentration, say
c�, of both ionic species.

We employ the dimensionless notation of �2�; thus, the
coordinate x �normal to the membrane�, the molar concentra-
tions c�, and electric potential � are, respectively, obtained
by normalizing with L, c�, and RT /ZF �R being the gas
constant, T the absolute temperature, and F the Faraday
constant—a mole of charge�. The membrane �x=0� is main-
tained at a negative electric potential, say −V, relative to the
bulk �x=1�. Our interest lies in the steady-state transport, and
specifically in the electric current in the system as a function
of V. When seeking a one-dimensional solution, ionic con-
servation at steady-state conditions implies that the cations
experience a uniform flux �normalized with D+c� /L�, say 2j,
directed toward the membrane. Integration of the appropriate
Nerst-Planck equation then reads

dc+

dx
+ c+d�

dx
= 2j . �1�

The membrane impermeability to anions, on the other hand,
necessitates zero anionic current,

dc−

dx
− c−d�

dx
= 0. �2�

The electric current toward the membrane, normalized with
ZFD+c� /L, is therefore 2j. Note that Eq. �2� implies a Bolt-
zmann distribution for c−; with no loss of generality we take
�=0 at x=1, whence

c− = e�. �3�

The ionic transport is coupled to the electric potential, itself
governed by the Poisson equation

d2�

dx2 = −
c+ − c−

2�2 . �4�

Here, �=� /L in which � is the Debye thickness,*udi@technion.ac.il
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�2 =
�RT

2Z2F2c�

. �5�

It is useful to define the charge density �normalized with
2ZFc��, q, and the average �“salt”� concentration �normal-
ized with c��, c,

q =
c+ − c−

2
, c =

c+ + c−

2
. �6�

These two variables can be used instead of c�. Moreover, it
is convenient to employ the electric field

E = −
d�

dx
�7�

instead of �. Thus, addition of Eqs. �1� and �2� yields the salt
balance

dc

dx
− qE = j , �8�

while subtraction of these equations yields the charge bal-
ance

dq

dx
− cE = j . �9�

The Poisson Eq. �4�, moreover, adopts the form

q = �2dE

dx
. �10�

The preceding differential equations are supplemented by
appropriate boundary conditions. Being ideal, the membrane
at x=0 is imposing a fixed cation concentration, say p,

x = 0: c+ = p . �11�

At x=1, on the other hand, the requirement of interfacing the
Ohmic region implies

x = 1: c� = 1. �12�

In principle, another boundary condition is required to
uniquely specify the problem and determine j: this is the
imposed-voltage condition ��x=0�=−V. Here, following the
standard approach �2,15,24�, we conveniently replace the po-
tentiostatic problem by an equivalent galvanostatic problem,
assuming j prescribed and calculating V.

The preceding equations constitute a well-posed problem
for all � values. As shown by Rubinstein �29�, these equa-
tions can be captured by a single master equation: substitu-
tion of Eq. �10� into Eq. �8� followed by integration yields,
upon making use of Eq. �12�,

c = j�x − x�� +
1

2
�2�E2 − E2�x = 1�� , �13�

wherein

x� = 1 −
1

j
. �14�

A similar master equation was obtained by Ben and Chang
�24�. Substitution of Eqs. �10� and �13� into Eq. �9� then

yields a single equation for E �see also �15��,

�2�d2E

dx2 −
1

2
E3 +

1

2
E2�x = 1�E� − Ej�x − x�� = j . �15�

III. THIN DEBYE LAYER LIMIT

A. Electroneutral region

In virtually all realistic scenarios the Debye thickness is
small, �	1. Because of the appearance of �2 as a multipli-
cative factor in the highest-order derivative of Eq. �10�, that
asymptotic limit is a singular one. This singularity is re-
flected in the presence of a boundary layer �the Debye layer�
of width O��� about x=0. Accordingly, we define the “outer”
coordinate X, which is appropriate to describe all processes
occurring outside that layer. Thus, in contrast to the
membrane-electrolyte interface x=0, the value X=0 corre-
sponds to the outer edge of the Debye layer.

Asymptotic solutions for all variables as a function of X
are then sought via the generic regular expansion in �,

f�X;�� � f0�X� + �f1�X� + �2f2�X� + ¯ . �16�

Poisson’s Eq. �10� implies leading-order electroneutrality,
q0�X�=0, whereby c0

��X�=c0�X�. Then, both the salt balance
�8� and �16� yield a linear salt profile for both ionic species,

c0 = j�X − x�� . �17�

The leading-order electric field is provided by Eq. �9�,

E0 = −
1

X − x�

. �18�

The electroneutral solution is also obtainable from the master
Eq. �15�, which clearly possesses an asymptotic expansion of
the form of Eq. �16�,

E � E0 + �E1 + �2E2 + ¯ �19�

in which E0 is given by Eq. �18�. Noting that E�x=1��−j
+o�1� readily leads the way to a recursive solution of Eq.
�15�, where E1=0 and

E2 = −
3

2j�X − x��4 −
j

2�X − x��2 . �20�

In view of Eqs. �18� and �20�, it is evident that the expansion
�19� is asymptotic provided X−x�
�2/3. If in addition X
−x�	1 the first term in Eq. �20� dominates its successor.

B. Cathodic Debye layer

In general, the linear cation profile �17� does not satisfy
the cathodic condition �11�, and an electrically charged ca-
thodic boundary layer �CBL� of width � is established near
x=0, wherein the leading-order ionic concentrations differ.
The Debye-layer structure is universal, independent to lead-
ing order upon the macroscale geometry. Indeed, because of
the scale disparity the ionic current does not affect the
leading-order layer structure, whereby the Nerst-Planck inte-
grals �1� and �2� readily yield the Boltzmann distributions,
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c0
��x̄� = c0�X = 0�exp����0�x̄� − �0�X = 0��	 . �21�

Here,

x̄ = x/� �22�

is a re-scaled Debye-layer coordinate, and c0�X=0� �=1− j,
see Eqs. �14� and �17�� is the ionic concentration just outside
the Debye layer, corresponding to x̄→�. Substitution of Eq.
�21� into Eq. �10� yields the Poisson-Boltzmann equation for
the Debye-layer electric field,

d2�0

dx̄2 = �1 − j�sinh��0�x̄� − �0�X = 0�� . �23�

The Gouy-Chapman solution of this equation, corresponding
to an O�1 /�� electric field, is well known �2�; at large x̄, the
electric potential decays exponentially fast to the electroneu-
tral value �0�X=0�. An important quantity in that solution is
the total Debye-layer voltage �the “zeta potential”�, which is
given to leading order by

�0 = �0�x̄ = 0� − �0�X = 0� . �24�

The evaluation of �0 does not require the detailed Gouy-
Chapman solution; rather, application of Eq. �11� in conjunc-
tion with Eq. �21� yields

�0 = ln�1 − j� − ln p . �25�

C. Cell voltage

The cell voltage V is obtained from electric field integra-
tion across the cell. The large-x̄ exponential decay of the
Gouy-Chapman distribution allows writing the leading-order
voltage as the sum



0

� d�0

dx̄
dx̄ + 


0

1 d�0

dX
dX = − �0 − 


0

1

E0�X� dX . �26�

The electroneutral voltage is obtained from Eqs. �14� and
�18�,



0

1

E0�X� dX = ln�1 − j� . �27�

Substitution of Eqs. �25� and �27� into Eq. �26� yields the
familiar j−V correlation �13�,

V � ln
p

�1 − j�2 . �28�

IV. OVERLIMITING RÉGIME

A. Diffusion layer and space-charge layer

The approximation �28� clearly implies the upper limit j
=1, which corresponds to a saturated diffusive current,
whereby c0 vanishes near the cathode �see Eq. �17��. It is
well known however from both experiments and numerical
simulations �14� that overlimiting currents �j1� appear at
sufficiently large voltages. It was indeed shown by Rubin-

stein and his colleagues �14,30� that for O�ln �� voltages the
preceding asymptotic expansions break down, and that for
O�1 /�� large voltages a new overlimiting regime is formed
where j−1=O�1�.

The possibility of an overlimiting current has to do with
the nonlinearity of the system. Consider indeed the master
Eq. �15�; in addition to the electroneutral expansion �19�, it
was also shown �2� to possess the expansion

E�X,�� � �−1Ẽ−1�X� + Ẽ0�X� + �Ẽ1�X� + ¯ , �29�

corresponding to an O��−1� large electric field. Here

Ẽ−1 = − �2j�1/2�x� − X�1/2, �30�

Ẽ0 =
− 1

2�x� − X�
, �31�

and

Ẽ1 =
5j−1/2

27/2�x� − X�5/2 −
j3/2

23/2�x� − X�1/2 . �32�

The series, valid for X�x�, is asymptotic provided x�−X

�2/3. If, in addition, x�−X	1, the second term in Eq. �32�
is negligible compared with the first.

Since the ionic concentrations must be positive, Eq. �17�
implies that the original expansion �19� can only hold for
Xx�. Thus, while that expansion was valid in the entire cell
�except in a thin Debye layer� in the underlimiting case, it
only holds at part of the cell in the overlimiting case. The
cell is therefore decomposed into two O�1� intervals: a dif-
fusion layer �DL� for Xx� and X−x�
�2/3, where Eq. �19�
holds, and a space-charge layer �SCL� layer for X�x� and
x�−X
�2/3, where Eq. �29� holds. Substitution of Eqs. �29�
and �30� into Eq. �13� reveals that the salt concentration is
only O��� in the SCL. Moreover, in view of the large O��−1�
electric field magnitude, the electric potential there trans-
forms from negative O�1� values to negative O��−1� values.
As a consequence, Eq. �3� implies that the anion concentra-
tion there becomes exponentially small. Since c−q=c−, it
follows that the SCL is quantified by O��� charge density
�this can also be seen from Poisson’s equation�, as opposed
to the O��2� charge density in the DL.

To illustrate the difference between the underlimiting and
overlimiting regimes, and, specifically, the unique character-
istics of the DL and SCL at the latter, we numerically solved
the galvanostatic boundary-value problem �8�–�12� for �
=0.01 and p=2 �using a standard shooting method�. The re-
sulting ionic concentration profiles are shown in Fig. 1 for
the underlimiting-current case j=1 /2 and for the
overlimiting-current case j=2 �where x�=1 /2�, the latter
clearly illustrating the DL-SCL decomposition. This decom-
position is also shown in Fig. 2, where the numerically cal-
culated electric field �for j1� is compared with the appro-
priate approximations in both the DL and SCL regions.

B. Transition layer

As explained by Rubinstein and Zaltzman �2�, the DL and
SCL are connected by an O��2/3�-wide transition layer �TL�
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about x�. This layer is naturally analyzed using the transfor-
mation

x − x� = j−1/3�2/3z, E = j1/3�−2/3F , �33�

which transforms the master Eq. �15� into

d2F

dz2 =
1

2
F3 + zF + 1 −

�4/3

2j2/3E2�x = 1�F . �34�

At large z, this equation possesses the expansion �cf. Eqs.
�18�–�20��

F � −
1

z
−

3

2z4 + ¯ , �35�

while as z→−� �cf. Eqs. �29�–�32��,

F � − �− 2z�1/2 +
1

2z
+

5

27/2�− z�5/2 + ¯ . �36�

These approximations are obtained by neglecting the last
term in Eq. �34� and are therefore valid provided the limit
z
1 is modified to 1	z	�−2/3. Thus, to leading order, F is

a universal function, independent of both � and j.

C. Anion-free cathodic boundary layer

As in the case of underlimiting currents, the outer solution
near x=0 fails to satisfy the boundary condition �11�, and a
CBL is again established about x=0. This layer is again char-
acterized by O��� thickness and is therefore described by the
Debye-scale variable x̄ �see Eq. �22��. However, it now needs
to match the SCL outer solution rather then the electroneutral
solution. The need to match about an O��−1� strong electric
field and an exponentially small anion concentration implies
a structure which differs fundamentally from the Gouy-
Chapman one �see Eq. �21��. This new structure was re-
solved by Chu and Bazant �28� who postulated, as in the
underlimiting-current case, that the electric field is O�1 /��
and the cation concentration is O�1�,

E � �−1E−1�x̄� + ¯ , c+ � c0
+�x̄� + ¯ , �37�

but that the anion concentration is exponentially small. Solv-
ing the Debye-scale equations then yields �28�

E−1 = − 2m coth�mx̄ + n� , �38a�

c0
+ =

4m2

sinh2�mx̄ + n�
�n  0� . �38b�

Asymptotic matching to the SCL solution yields here m
=�jx� /2; condition �11� then yields sinh n=�2jx� / p.

V. VOLTAGE CALCULATION IN THE
OVERLIMITING RÉGIME

A. General scheme

While the voltage is O�1� in the underlimiting-current ré-
gime �see Eq. �28��, it becomes O��−1� for overlimiting cur-
rents, wherein the leading-order voltage is contributed by the
SCL �see Eqs. �29� and �30��,

V � − �−1

0

x�

Ẽ−1�X� dX =
23/2j1/2x�

3/2

3�
. �39�

For many applications, it is desired to obtain a systematic
asymptotic approximation for V in the limit �→0, up to
O�1� terms. Exploiting the integrable structure of the semi-
bounded geometry, Ben and Chang �24� showed that the
voltage can be calculated once the electric field is evaluated
on the cathode. Thus, using matched asymptotic expansions,
these authors improved the estimation �39�, thereby clarify-
ing the asymptotic structure of the j-V relation.

Our approach is distinct from that of Ben and Chang �24�:
we calculate the voltage directly by integrating the electric
field across the cell. While this robust scheme is applied here
for the idealized semibounded geometry �with the objective
of emphasizing the asymptotic scheme�, it is easily general-
ized to more realistic electrochemical cell models. Our goal
here is to calculate the voltage approximation up to O�1�
accuracy, thereby complementing the underlimiting-current
formula �28�. Unlike the underlimiting-current case, how-
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0
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1
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x

c±

c+

c−

c+

c−
j=2

j=1/2

FIG. 1. �Color online� Ionic concentrations for �=0.01 and p
=2 for both underlimiting �j=1 /2� and overlimiting �j=2� currents,
obtained using numerical solution of the boundary-value galvano-
static problem �8�–�12�.
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−200
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E

0 0.020.01 0.0150.005
−200

−180

−160
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FIG. 2. �Color online� The electric field distribution for �
=0.01, p=2, and j=2. The thick line depicts the numerical solution
of the boundary-value problem �8�–�12�. The thin lines represent
the DL expansion �19� and SCL expansion �29�. The inset zooms on
the near-membrane region, the thin line representing the CDL ap-
proximation �−1E−1�x̄� �see Eq. �38��.
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ever, the voltage calculation cannot be carried out by simple
summation of the respective contributions from the various
asymptotic regions �four of them now�, since these contribu-
tions appear as nonconverging integrals. We here show how
to address this obstacle using a regularization method. The
voltage is decomposed into four contributions

V = �

0

�

+ 

�

x�−�

+ 

x�−�

x�+�

+ 

x�+�

1 d�

dx
dx . �40�

The auxiliary parameters � and � are at our disposal; without
loss of generality they are assumed 	1, whereby the four
contributions are conceptually associated with the CBL,
SCL, TL, and DL, respectively. We further assume
�	��	1� and �2/3	��	1�. Our goal is to calculate the four
contributions up to O�1�. While these contributions may de-
pend upon � and �, their sum must be independent of these
arbitrary parameters.

The CBL and DL contributions are obtained using Eqs.
�18� and �38�, respectively,



0

� d�

dx
dx = − �


0

�/�

E�x̄� dx̄ � �2jx��1/2�

�
+ 2n − 3 ln 2

− ln
jx�

p
+ o�1� , �41�



x�+�

1 d�

dx
dx � ln�1 − x�� − ln � + o�1� . �42�

The first term in Eq. �41� diverges with � /��
1�; it is asso-
ciated with the CBL structure at overlimiting currents,
wherein the leading-order electric field �38a� approaches a
large uniform value as x̄→� �as opposed to the comparable
exponential decay in the underlining-current case�. The sec-
ond term in Eq. �42�, which originates in the 1 /x-type be-
havior of the DL electric field �18� in the vicinity of x�,
diverges as well.

The contribution of the SCL is obtained using the expan-
sion �29�,



�

x�−� d�

dx
dx � − �−1


�

x�−�

Ẽ−1�X� dX − 

�

x�−�

Ẽ0�X� dX

+ o�1� . �43�

To the same order of approximation, it is legitimate to re-
place � by 0 in the second integral �but not in the first�.
Substitution of Eqs. �30� and �31� and using the binomial
expansion yields here



�

x�−� d�

dx
dx �

23/2j1/2

3�
�x�

3/2 − �3/2� − �2jx��1/2�

�
+

1

2
ln

x�

�

+ o�1� . �44�

�Obtaining the latter expression necessitates modifying the
requirement �	�	1 to the stricter one �	�	�1/2.� Thus,
the first term in Eq. �41� is canceled by the second term in
Eq. �44�.

The sum of the preceding three voltage contributions still
contains two undetermined terms,

−
23/2j1/2

3�
�3/2 −

3

2
ln � , �45�

which diverge as �→0 and must therefore be canceled by
the TL contribution. Using the transformation �33�, this con-
tribution is provided by



x�−�

x�+� d�

dx
dx = − 


−j1/3�/�2/3

j1/3�/�2/3

F�z� dz . �46�

Even when interest lies only in leading-order term, evaluat-
ing this integral requires some caution. While � /�2/3→�, the
divergence of the integrand as z→−� �see Eq. �36�� prohib-
its replacing the upper and lower integration limits with ��.
It is therefore necessary to subtract this diverging part. More-
over, even after this is accomplished the integral does not
converge in view of the slow 1 /z-type integrand decay for
z→ �� �see Eqs. �35� and �36��. A naive subtraction of the
problematic 1 /z terms is not helpful here because it results in
a nonintegrable singularity at z=0. A regularization scheme
is therefore required.

B. TL voltage: Regularization method

For z0 and z�0 we, respectively, define

G�z� = F�z� +
1 − e−z

z
, G�z� = F�z� + �− 2z�1/2 −

1 − ez

2z
.

�47�

With these definitions, G=o�z−2� for z→ �� and is inte-
grable over the entire real axis,

I = 

−�

�

G�z� dz exists. �48�

Just like F, G is a universal function at leading order, inde-
pendent of both � and j. Accordingly, I� I0+o�1� for small
�, I0 being a pure number. A straightforward numerical
quadrature yields I0�−0.634.

In terms of G, the TL voltage contribution �46� is given
by

3

2



0

j1/3�/�2/3 1 − e−z

z
dz +

23/2j1/2�3/2

3�
− 


−j1/3�/�2/3

j1/3�/�2/3

G�z� dz .

�49�

The first integral is evaluated using the asymptotic identity
�31�



0

a 1 − e−z

z
dz � � + ln a + O�e−a/a� as a → � , �50�

wherein � is Euler’s constant. Moreover, the fast o�z−2� de-
cay of G at large �z� �see Eqs. �35� and �36�� implies that
replacing j1/3� /�2/3 with � in the second integral of Eq. �49�
leads to an o�1� error. Thus, we obtain the TL voltage,
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3�

2
+

3

2
ln � +

1

2
ln j − ln � +

23/2j1/2�3/2

3�
− I0 + o�1� .

�51�

Note that Eq. �51� comprises the requisite two inverse terms
to Eq. �45�.

Adding the contributions �41�, �42�, �44�, and �51� fur-
nishes the j-V approximation, accurate to O�1�,

V �
2�2�j − 1�3/2

3�j
+ ln

p

8�j�j − 1�1/2 + 2n +
3�

2
− I0 + o�1� .

�52�

As required, this approximation is independent of the artifi-
cial parameters � and �. In Fig. 3 we compare this approxi-
mation to the j-V relation obtained from the numerical solu-
tion of the exact problem. This figure also shows how the
comparable underlimiting-current approximation �28�
matches the numerical calculations for j�1.

VI. SUMMARY

We have considered the one-dimensional ionic transport
through an electrochemical cell which is bounded by an ideal
cathodic ion-selective membrane. A systematic method was
constructed for evaluating the j-V relation at overlimiting
currents, using a galvanostatic boundary-value formulation.
Thus, for any given value of the current j, the transport pro-
cesses in the cell are calculated by solving a master differ-
ential equation in the thin-Debye-layer limit. This highly sin-
gular problem is manifested in the appearance of four
distinct asymptotic regions. The voltage V is then calculated
by integrating the electric field over the cell length. A naive
attempt to evaluate it by adding the respective contribution
from the four asymptotic domains is frustrated by the appear-
ance of nonconvergent integrals. We here describe how to

overcome this obstacle using a careful regularization proce-
dure.

Following previous analyses �1,2,24�, and with the objec-
tive of illuminating the regularization scheme, we have ad-
dressed here an idealized electrochemical model. Idealization
is explicit in two aspects: the geometric configuration, which
entails only a single-ion-exchange surface �“semibounded”
geometry�, and the modeling of that surface as an ideal mem-
brane, with a prescribed cationic concentration. While indeed
idealized, our model exhibits all the important feature of the
overlimiting-current regime.

The present model can be extended without any concep-
tual difficulty to more realistic electrochemical systems
where the artificial “mixed bulk” is replaced with a second
ion-exchange surface �15,17� and where the ideal-membrane
idealization is replaced with more realistic kinetic models
�28�. Because of the need to satisfy an integral constraint
�see �15�� in such systems, however, the accompanying
analysis is technically involved and therefore tends to ob-
scure the regularization methodology which we want to
highlight. Mathematically, the need for regularization arises
because of the large-argument behavior of the transition-
layer field. Since such a layer is present in virtually all elec-
trochemical processes in the overlimiting regime �see, e.g.,
�28��, the problem of an indeterminate j-V relation is rather
universal.

As a matter of fact, the semibounded model may actually
constitute the appropriate local description at the vicinity of
curved membranes �e.g., the boundaries of ion-selective
granules�, whereby its applicability extend beyond the lim-
ited class of 1D transport in electrochemical cells. In these
problems, wherein the diffusion-layer dimension is set by a
global Péclet number, the transport is approximately one di-
mensional at the vicinity of the granule boundary. When
reaching out of that region, the diffusion-layer concentrations
approach a uniform mixed-bulk value, as in Eq. �12�.

The relevance of the semibounded model to electrophore-
sis of the second kind is discussed by Ben and Chang �24�.
These authors exploit the unique structure of the semi-
bounded geometry to obtain the overlimiting j-V relation us-
ing an asymptotic evaluation of the electric field at the mem-
brane surface, thus avoiding the pain of adding the respective
contributions from the separate asymptotic domains. The j-V
relation �3.15� in �24� coincides with Eq. �52� in both the
O��−1� leading term and the O�ln �� correction. �Note that
both j and � are defined differently in �24�. Also, there seems
to be a typo in the second term of Eq. �3.15� in �24�: the 1/2
exponent should apply to j−2.� Using these terms, Ben and
Chang �24� obtained a large-flux universal j-V correlation on
which a large number of numerical simulations successfully
collapsed. In many practical situation it is desirable to go
further and obtain a precise expression valid for moderate
fluxes, as these represent the onset of the overlimiting region.
The O�1� terms in relation �3.15� of �24� are only partially
similar to those in Eq. �52�. The mismatch is observed in
Fig. 3.

0 5 10 15 20 25
−0.5

0

0.5

1

1.5

V

j

Underlimiting−current approximation
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FIG. 3. �Color online� j-V characteristics for �=0.01 and p=2.
The crosses denote numerical solution of the boundary-value gal-
vanostatic problem �10�–�12�. The solid lines depict the
underlimiting-current approximation �28� and the overlimiting-
current approximation �52�. The dashed curve is the leading-order
overlimiting-current approximation �39�, and the thin line is Eq.
�3.15� of Ben and Chang �24�.
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