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Asymptotic current-voltage relations for currents exceeding the diffusion limit
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We consider the one-dimensional transport of ions into a perm-selective solid. Direct attempts to evaluate
the current-voltage characteristics for currents exceeding the diffusion limit are frustrated by the appearance of
nonconverging integrals. We describe how to overcome this obstacle using a regularization scheme.
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I. INTRODUCTION

Understanding the passage of ionic currents through ion-
selective solids (e.g., membranes, reactive electrodes, and
permeable granules) is a fundamental problem of classical
physics with applications to electrodialysis [1,2], nanode-
vices [3—6], thin-film batteries [7], and ionic channels [8].
Similar transport processes occur in solid electrolytes [9,10]
and semiconductors [11,12].

A typical scenario entails one-dimensional (1D) transport
through an ideal ion-selective membrane. While classical
analysis predicts a diffusion-limited current saturation [13],
both experiments and numerical analyses [14,15] have
shown the possibility of “overlimiting” currents, which ex-
ceed the diffusion limit. The physical mechanism which al-
lows such currents was explained by Rubinstein and his col-
leagues using singular-perturbation methods [1,2,16] and the
transformation from underlimiting to overlimiting currents
was explained in detail by Zaltzman and Rubinstein [17].
The inherent instability of overlimiting currents
[1,2,5,6,16,18,19], together with the recent discovery of
second-kind electro-osmosis at overlimiting conditions
[20-22] and the consequent applications to nonlinear electro-
phoresis of semipermeable granules [23-27], further empha-
sizes the necessity to understand the basic 1D transport pro-
cess.

A fundamental problem in that context is the calculation
of the current-voltage (j—V) relation. This relation is well
known for underlimiting currents, whereby j saturates expo-
nentially at large V [see Eq. (28)]. For currents exceeding the
diffusion limit, however, this calculation is obstructed by the
appearance of nonconverging integrals (see [28]). It is the
goal of this paper to present an asymptotic derivation of the
J—V characteristics for overlimiting currents using a system-
atic regularization procedure.

Toward this end, we will consider the simplest 1D con-
figuration [1,2,24] of an electrolyte solution, which is
bounded between an anion-impermeable planar membrane
and a well-stirred Ohmic bulk. While our scheme can be
generalized to more realistic systems [16,17,28], we prefer to
demonstrate it for the simplest electrochemical cell that ex-
hibits all the essential characteristics of the 1D transport
mechanism.
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II. PROBLEM FORMULATION

Following [2,24], the idealized configuration we consider
comprises a symmetric electrolyte solution (permittivity e,
ionic diffusivities D=, and valencies = Z), which is in con-
tact with an ideal cation-selective membrane, impermeable
to anions. As in [2,24] we assume that at distance L from the
membrane the electrolyte interfaces a well-stirred Ohmic
bulk characterized by an identical molar concentration, say
Cw, Of both ionic species.

We employ the dimensionless notation of [2]; thus, the
coordinate x (normal to the membrane), the molar concentra-
tions ¢, and electric potential ¢ are, respectively, obtained
by normalizing with L, ¢, and RT/ZF (R being the gas
constant, 7 the absolute temperature, and F the Faraday
constant—a mole of charge). The membrane (x=0) is main-
tained at a negative electric potential, say —V, relative to the
bulk (x=1). Our interest lies in the steady-state transport, and
specifically in the electric current in the system as a function
of V. When seeking a one-dimensional solution, ionic con-
servation at steady-state conditions implies that the cations
experience a uniform flux (normalized with D*c,./L), say 2j,
directed toward the membrane. Integration of the appropriate
Nerst-Planck equation then reads

—+c"—=2j. (1)
X

The membrane impermeability to anions, on the other hand,
necessitates zero anionic current,

——-c—=0. (2)

The electric current toward the membrane, normalized with
ZFD"*c,/L, is therefore 2j. Note that Eq. (2) implies a Bolt-
zmann distribution for ¢7; with no loss of generality we take
¢=0 at x=1, whence

c =e". (3)

The ionic transport is coupled to the electric potential, itself
governed by the Poisson equation

d*¢ ct—c”

- 28 “)

Here, 6=N/L in which \ is the Debye thickness,
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It is useful to define the charge density (normalized with
2ZFc.), q, and the average (“salt”) concentration (normal-
ized with c.,), c,

(6)

These two variables can be used instead of ¢*. Moreover, it
is convenient to employ the electric field
do
E=-— 7
™ (7)
instead of ¢. Thus, addition of Egs. (1) and (2) yields the salt
balance

dc

——-gE=j, 8

o E=] (8)
while subtraction of these equations yields the charge bal-
ance

dgq

L _cE=j. 9
o CE=J 9)

The Poisson Eq. (4), moreover, adopts the form

dE
=5—. 10
q=05 (10)
The preceding differential equations are supplemented by
appropriate boundary conditions. Being ideal, the membrane
at x=0 is imposing a fixed cation concentration, say p,

x=0: c"=p. (11)

At x=1, on the other hand, the requirement of interfacing the
Ohmic region implies

x=1: ¢ =1. (12)

In principle, another boundary condition is required to
uniquely specify the problem and determine j: this is the
imposed-voltage condition ¢(x=0)=-V. Here, following the
standard approach [2,15,24], we conveniently replace the po-
tentiostatic problem by an equivalent galvanostatic problem,
assuming j prescribed and calculating V.

The preceding equations constitute a well-posed problem
for all & values. As shown by Rubinstein [29], these equa-
tions can be captured by a single master equation: substitu-
tion of Eq. (10) into Eq. (8) followed by integration yields,
upon making use of Eq. (12),

1
c=j(x—x*)+552[E2—E2(x=1)], (13)
wherein

X.=1--. (14)

J
A similar master equation was obtained by Ben and Chang
[24]. Substitution of Egs. (10) and (13) into Eq. (9) then
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yields a single equation for E (see also [15]),

d’E 1 1
& ﬁ_5E3+5E2(x=1)E —Ej(x-x,)=j. (15)

II1. THIN DEBYE LAYER LIMIT
A. Electroneutral region

In virtually all realistic scenarios the Debye thickness is
small, 5<1. Because of the appearance of & as a multipli-
cative factor in the highest-order derivative of Eq. (10), that
asymptotic limit is a singular one. This singularity is re-
flected in the presence of a boundary layer (the Debye layer)
of width O(6) about x=0. Accordingly, we define the “outer”
coordinate X, which is appropriate to describe all processes
occurring outside that layer. Thus, in contrast to the
membrane-electrolyte interface x=0, the value X=0 corre-
sponds to the outer edge of the Debye layer.

Asymptotic solutions for all variables as a function of X
are then sought via the generic regular expansion in 9,

f(X;8) ~ foX) + 8 (X) + &fo(X) + -+ (16)

Poisson’s Eq. (10) implies leading-order electroneutrality,
q0(X)=0, whereby ¢, (X)=c((X). Then, both the salt balance
(8) and (16) yield a linear salt profile for both ionic species,

co=j(X—x.). (17)
The leading-order electric field is provided by Eq. (9),
Ey= ! (18)
0T x - X

The electroneutral solution is also obtainable from the master
Eq. (15), which clearly possesses an asymptotic expansion of
the form of Eq. (16),

E~Ey+ 0E, + 8E, + -+ (19)

in which E, is given by Eq. (18). Noting that E(x=1)~—j
+0(1) readily leads the way to a recursive solution of Eq.
(15), where E;=0 and
3 J
2j(X-x)* 2(X-x)*

E,= (20)
In view of Egs. (18) and (20), it is evident that the expansion
(19) is asymptotic provided X—x,> 6”3, If in addition X
—x,<<1 the first term in Eq. (20) dominates its successor.

B. Cathodic Debye layer

In general, the linear cation profile (17) does not satisfy
the cathodic condition (11), and an electrically charged ca-
thodic boundary layer (CBL) of width & is established near
x=0, wherein the leading-order ionic concentrations differ.
The Debye-layer structure is universal, independent to lead-
ing order upon the macroscale geometry. Indeed, because of
the scale disparity the ionic current does not affect the
leading-order layer structure, whereby the Nerst-Planck inte-
grals (1) and (2) readily yield the Boltzmann distributions,
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o () = co(X = 0)exp{F [@o(¥) - eo(X=0)]}.  (21)
Here,
X=x/6 (22)

is a re-scaled Debye-layer coordinate, and cy(X=0) [=1-},
see Eqgs. (14) and (17)] is the ionic concentration just outside
the Debye layer, corresponding to x— . Substitution of Eq.
(21) into Eq. (10) yields the Poisson-Boltzmann equation for
the Debye-layer electric field,

d2<P0

2 (1 = j)sinh[¢y(¥) — @o(X =0)]. (23)

The Gouy-Chapman solution of this equation, corresponding
to an O(1/6) electric field, is well known [2]; at large X, the
electric potential decays exponentially fast to the electroneu-
tral value ¢y(X=0). An important quantity in that solution is
the total Debye-layer voltage (the “zeta potential”), which is
given to leading order by

$o=@o(X=0) = @o(X=0). (24)

The evaluation of ¢, does not require the detailed Gouy-
Chapman solution; rather, application of Eq. (11) in conjunc-
tion with Eq. (21) yields

{o=In(1-j)-Inp. (25)

C. Cell voltage

The cell voltage V is obtained from electric field integra-
tion across the cell. The large-x exponential decay of the
Gouy-Chapman distribution allows writing the leading-order
voltage as the sum

“de ! do !
J~—£ﬁ+f-—%ﬂz—g—flMMdX (26)

o dx 0

The electroneutral voltage is obtained from Egs. (14) and
(18),

1
f Ey(X) dX=1In(1 - ). (27)
0

Substitution of Egs. (25) and (27) into Eq. (26) yields the
familiar j—V correlation [13],

V~In (28)

)4
(1-j)*

IV. OVERLIMITING REGIME
A. Diffusion layer and space-charge layer

The approximation (28) clearly implies the upper limit j
=1, which corresponds to a saturated diffusive current,
whereby ¢, vanishes near the cathode [see Eq. (17)]. It is
well known however from both experiments and numerical
simulations [14] that overlimiting currents (j > 1) appear at
sufficiently large voltages. It was indeed shown by Rubin-
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stein and his colleagues [14,30] that for O(In ) voltages the
preceding asymptotic expansions break down, and that for
O(1/ ) large voltages a new overlimiting regime is formed
where j—1=0(1).

The possibility of an overlimiting current has to do with
the nonlinearity of the system. Consider indeed the master
Eq. (15); in addition to the electroneutral expansion (19), it
was also shown [2] to possess the expansion

EX,8) ~ 5'"E_(X)+Ey(X)+ SE,(X) + -+,  (29)

corresponding to an O(&™!) large electric field. Here

E—l —_ (Zj)l/2(x* _X)]/Z’ (30)

~ -1

E0:2(x*—X)’ (31)

and

5]'—1/2 j3/2

E = 272(x, — X)3 - 232(x, - X)12°

(32)

The series, valid for X <x,, is asymptotic provided x,—X
> &3, If, in addition, x,—X <1, the second term in Eq. (32)
is negligible compared with the first.

Since the ionic concentrations must be positive, Eq. (17)
implies that the original expansion (19) can only hold for
X > x,.. Thus, while that expansion was valid in the entire cell
(except in a thin Debye layer) in the underlimiting case, it
only holds at part of the cell in the overlimiting case. The
cell is therefore decomposed into two O(1) intervals: a dif-
fusion layer (DL) for X>x, and X—x,.> 6”3, where Eq. (19)
holds, and a space-charge layer (SCL) layer for X <x, and
x,—X> 63, where Eq. (29) holds. Substitution of Egs. (29)
and (30) into Eq. (13) reveals that the salt concentration is
only O(9) in the SCL. Moreover, in view of the large O(5")
electric field magnitude, the electric potential there trans-
forms from negative O(1) values to negative O(5™!) values.
As a consequence, Eq. (3) implies that the anion concentra-
tion there becomes exponentially small. Since c—g=c7, it
follows that the SCL is quantified by O(J8) charge density
(this can also be seen from Poisson’s equation), as opposed
to the O(&%) charge density in the DL.

To illustrate the difference between the underlimiting and
overlimiting regimes, and, specifically, the unique character-
istics of the DL and SCL at the latter, we numerically solved
the galvanostatic boundary-value problem (8)—(12) for &
=0.01 and p=2 (using a standard shooting method). The re-
sulting ionic concentration profiles are shown in Fig. 1 for
the underlimiting-current case j=1/2 and for the
overlimiting-current case j=2 (where x,=1/2), the latter
clearly illustrating the DL-SCL decomposition. This decom-
position is also shown in Fig. 2, where the numerically cal-
culated electric field (for j> 1) is compared with the appro-
priate approximations in both the DL and SCL regions.

B. Transition layer

As explained by Rubinstein and Zaltzman [2], the DL and
SCL are connected by an O(8*?)-wide transition layer (TL)
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FIG. 1. (Color online) Ionic concentrations for §=0.01 and p
=2 for both underlimiting (j=1/2) and overlimiting (j=2) currents,
obtained using numerical solution of the boundary-value galvano-
static problem (8)—(12).

about x,. This layer is naturally analyzed using the transfor-
mation

—1/3 52/31
b

X—X.=] E=j"387%8F, (33)

which transforms the master Eq. (15) into

&@F 1 53
Z - _ 53 2y =
42 —2F +zF+1—2j2/3E (x=1)F. (34)
At large z, this equation possesses the expansion [cf. Egs.
(18)-(20)]
I 3

Fre—m e oo, 35
b (35)

while as z— —o [cf. Egs. (29)-(32)],
1 5
1, - 2 .
F~-(-22)""+ ot

These approximations are obtained by neglecting the last
term in Eq. (34) and are therefore valid provided the limit
z>1 is modified to 1 <z< §%3. Thus, to leading order, F is

(36)

_2000 0.006 0.01 0.015 0.02

0 0.2 0.4 0.6 0.8 1
X

FIG. 2. (Color online) The electric field distribution for &
=0.01, p=2, and j=2. The thick line depicts the numerical solution
of the boundary-value problem (8)—(12). The thin lines represent
the DL expansion (19) and SCL expansion (29). The inset zooms on
the near-membrane region, the thin line representing the CDL ap-
proximation 8 'E_;(X) [see Eq. (38)].
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a universal function, independent of both & and ;.

C. Anion-free cathodic boundary layer

As in the case of underlimiting currents, the outer solution
near x=0 fails to satisfy the boundary condition (11), and a
CBL is again established about x=0. This layer is again char-
acterized by O(9) thickness and is therefore described by the
Debye-scale variable X [see Eq. (22)]. However, it now needs
to match the SCL outer solution rather then the electroneutral
solution. The need to match about an O(57!) strong electric
field and an exponentially small anion concentration implies
a structure which differs fundamentally from the Gouy-
Chapman one [see Eq. (21)]. This new structure was re-
solved by Chu and Bazant [28] who postulated, as in the
underlimiting-current case, that the electric field is O(1/6)
and the cation concentration is O(1),

E~8'EL(X)+ -, ct~ci@)+ -, (37)

but that the anion concentration is exponentially small. Solv-
ing the Debye-scale equations then yields [28]

E_,=-2m coth(mx + n), (38a)

4m?

(n>0). (38b)

.
cp=————
0 sinh?(mx + n)
Asymptotic matching to the SCL solution yields here m
=\jx./2; condition (11) then yields sinh n=y2jx./p.

V. VOLTAGE CALCULATION IN THE
OVERLIMITING REGIME

A. General scheme

While the voltage is O(1) in the underlimiting-current ré-
gime [see Eq. (28)], it becomes O(57!) for overlimiting cur-
rents, wherein the leading-order voltage is contributed by the
SCL [see Egs. (29) and (30)],

23/2j1/2xi/2

26 (39)

V~- é“lf E_(X)dX=
0

For many applications, it is desired to obtain a systematic
asymptotic approximation for V in the limit 6—0, up to
O(1) terms. Exploiting the integrable structure of the semi-
bounded geometry, Ben and Chang [24] showed that the
voltage can be calculated once the electric field is evaluated
on the cathode. Thus, using matched asymptotic expansions,
these authors improved the estimation (39), thereby clarify-
ing the asymptotic structure of the j-V relation.

Our approach is distinct from that of Ben and Chang [24]:
we calculate the voltage directly by integrating the electric
field across the cell. While this robust scheme is applied here
for the idealized semibounded geometry (with the objective
of emphasizing the asymptotic scheme), it is easily general-
ized to more realistic electrochemical cell models. Our goal
here is to calculate the voltage approximation up to O(1)
accuracy, thereby complementing the underlimiting-current
formula (28). Unlike the underlimiting-current case, how-
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ever, the voltage calculation cannot be carried out by simple
summation of the respective contributions from the various
asymptotic regions (four of them now), since these contribu-
tions appear as nonconverging integrals. We here show how
to address this obstacle using a regularization method. The
voltage is decomposed into four contributions

TR N S 9 -

The auxiliary parameters 7 and £ are at our disposal; without
loss of generality they are assumed <1, whereby the four
contributions are conceptually associated with the CBL,
SCL, TL, and DL, respectively. We further assume
5<n(<1) and 83 < &(<1). Our goal is to calculate the four
contributions up to O(1). While these contributions may de-
pend upon 7 and &, their sum must be independent of these
arbitrary parameters.

The CBL and DL contributions are obtained using Egs.
(18) and (38), respectively,

74 n/é
f L= 5f E(%) dx ~ (2jx*)1/2g+2n—3 In?2
0

—ln&+0(1), (41)
p

1
f d—(pdx~ln(l—x*)—1n E+o(l). (42)
v dX

The first term in Eq. (41) diverges with 7/ 8(>1); it is asso-
ciated with the CBL structure at overlimiting currents,
wherein the leading-order electric field (38a) approaches a
large uniform value as X— o0 (as opposed to the comparable
exponential decay in the underlining-current case). The sec-
ond term in Eq. (42), which originates in the 1/x-type be-
havior of the DL electric field (18) in the vicinity of x.,
diverges as well.

The contribution of the SCL is obtained using the expan-
sion (29),

X—§ d(p x—§ _
f d.x ~—6 f 1(X) dX — f Eo(X) 1704
n 7

+o(1). (43)

To the same order of approximation, it is legitimate to re-
place 7 by 0 in the second integral (but not in the first).
Substitution of Egs. (30) and (31) and using the binomial
expansion yields here

vt g 2302172
f d—(de~ L (3o (2]x*)”2— " —ln
” x 36 o 2 §
+o(1). (44)

(Obtaining the latter expression necessitates modifying the
requirement << 7<<1 to the stricter one §< << §'2.) Thus,
the first term in Eq. (41) is canceled by the second term in
Eq. (44).
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The sum of the preceding three voltage contributions still
contains two undetermined terms,

23/2 -1/2

53/2 § g (45)

which diverge as 6—0 and must therefore be canceled by
the TL contribution. Using the transformation (33), this con-
tribution is provided by

v+ g 3¢ 8203
f Liax=- f F(2) dz. (46)

_j1Bg s

Even when interest lies only in leading-order term, evaluat-
ing this integral requires some caution. While &/ 6%° — o, the
divergence of the integrand as z— — [see Eq. (36)] prohib-
its replacing the upper and lower integration limits with *oo.
It is therefore necessary to subtract this diverging part. More-
over, even after this is accomplished the integral does not
converge in view of the slow 1/z-type integrand decay for
7— * oo [see Egs. (35) and (36)]. A naive subtraction of the
problematic 1/z terms is not helpful here because it results in
a nonintegrable singularity at z=0. A regularization scheme
is therefore required.

B. TL voltage: Regularization method
For z>0 and z<0 we, respectively, define

—Z

G(z)=F(z) + I-e ,
z

— &t
2z
(47)

G(z)=F(z) + (-22)"2 -

With these definitions, G=0(z"?) for z— *% and is inte-
grable over the entire real axis,

I=f G(z) dz exists. (48)

Just like F, G is a universal function at leading order, inde-
pendent of both & and j. Accordingly, I~ Iy+0(1) for small
6, Iy being a pure number. A straightforward numerical
quadrature yields 1,=-0.634.

In terms of G, the TL voltage contribution (46) is given

by

3 (B8RP | _ g 232j124312 13g 823
- dz + - G(z) dz.
2J, Z 36 _jBg s

(49)

The first integral is evaluated using the asymptotic identity

[31]

l—e2
f ¢ dz~vy+Ina+0(e%a) as a— o, (50)
0

Z

wherein 7 is Euler’s constant. Moreover, the fast o(z72) de-
cay of G at large that
replacing j'3&/ 83 with « in the second integral of Eq. (49)
leads to an o(1) error. Thus, we obtain the TL voltage,
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FIG. 3. (Color online) j-V characteristics for 6=0.01 and p=2.
The crosses denote numerical solution of the boundary-value gal-
vanostatic problem (10)—(12). The solid lines depict the
underlimiting-current approximation (28) and the overlimiting-
current approximation (52). The dashed curve is the leading-order
overlimiting-current approximation (39), and the thin line is Eq.
(3.15) of Ben and Chang [24].

3/2:1/2 £3/2
j €

3
Y —10+0(1).

3 1
?+§1n §+Elnj_ln 5+

(51)
Note that Eq. (51) comprises the requisite two inverse terms
to Eq. (45).

Adding the contributions (41), (42), (44), and (51) fur-

nishes the j-V approximation, accurate to O(1),
2\/5(]- _ 1)3/2 p
~ - +In—— 2
36j 88j(j—1)

(52)

As required, this approximation is independent of the artifi-
cial parameters 7 and &. In Fig. 3 we compare this approxi-
mation to the j-V relation obtained from the numerical solu-
tion of the exact problem. This figure also shows how the
comparable  underlimiting-current ~ approximation  (28)
matches the numerical calculations for j<<1.

VI. SUMMARY

We have considered the one-dimensional ionic transport
through an electrochemical cell which is bounded by an ideal
cathodic ion-selective membrane. A systematic method was
constructed for evaluating the j-V relation at overlimiting
currents, using a galvanostatic boundary-value formulation.
Thus, for any given value of the current j, the transport pro-
cesses in the cell are calculated by solving a master differ-
ential equation in the thin-Debye-layer limit. This highly sin-
gular problem is manifested in the appearance of four
distinct asymptotic regions. The voltage V is then calculated
by integrating the electric field over the cell length. A naive
attempt to evaluate it by adding the respective contribution
from the four asymptotic domains is frustrated by the appear-
ance of nonconvergent integrals. We here describe how to
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overcome this obstacle using a careful regularization proce-
dure.

Following previous analyses [1,2,24], and with the objec-
tive of illuminating the regularization scheme, we have ad-
dressed here an idealized electrochemical model. Idealization
is explicit in two aspects: the geometric configuration, which
entails only a single-ion-exchange surface (“semibounded”
geometry), and the modeling of that surface as an ideal mem-
brane, with a prescribed cationic concentration. While indeed
idealized, our model exhibits all the important feature of the
overlimiting-current regime.

The present model can be extended without any concep-
tual difficulty to more realistic electrochemical systems
where the artificial “mixed bulk™ is replaced with a second
ion-exchange surface [15,17] and where the ideal-membrane
idealization is replaced with more realistic kinetic models
[28]. Because of the need to satisfy an integral constraint
(see [15]) in such systems, however, the accompanying
analysis is technically involved and therefore tends to ob-
scure the regularization methodology which we want to
highlight. Mathematically, the need for regularization arises
because of the large-argument behavior of the transition-
layer field. Since such a layer is present in virtually all elec-
trochemical processes in the overlimiting regime (see, e.g.,
[28]), the problem of an indeterminate j-V relation is rather
universal.

As a matter of fact, the semibounded model may actually
constitute the appropriate local description at the vicinity of
curved membranes (e.g., the boundaries of ion-selective
granules), whereby its applicability extend beyond the lim-
ited class of 1D transport in electrochemical cells. In these
problems, wherein the diffusion-layer dimension is set by a
global Péclet number, the transport is approximately one di-
mensional at the vicinity of the granule boundary. When
reaching out of that region, the diffusion-layer concentrations
approach a uniform mixed-bulk value, as in Eq. (12).

The relevance of the semibounded model to electrophore-
sis of the second kind is discussed by Ben and Chang [24].
These authors exploit the unique structure of the semi-
bounded geometry to obtain the overlimiting j-V relation us-
ing an asymptotic evaluation of the electric field at the mem-
brane surface, thus avoiding the pain of adding the respective
contributions from the separate asymptotic domains. The j-V
relation (3.15) in [24] coincides with Eq. (52) in both the
0(6") leading term and the O(In &) correction. [Note that
both j and & are defined differently in [24]. Also, there seems
to be a typo in the second term of Eq. (3.15) in [24]: the 1/2
exponent should apply to j—2.] Using these terms, Ben and
Chang [24] obtained a large-flux universal j-V correlation on
which a large number of numerical simulations successfully
collapsed. In many practical situation it is desirable to go
further and obtain a precise expression valid for moderate
fluxes, as these represent the onset of the overlimiting region.
The O(1) terms in relation (3.15) of [24] are only partially
similar to those in Eq. (52). The mismatch is observed in
Fig. 3.
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